In finite population causal inference exact randomization tests can be constructed for sharp null hypotheses, i.e. hypotheses which fully impute the missing potential outcomes. Oftentimes inference is instead desired for the weak null that the sample average of the treatment effects takes on a particular value while leaving the subject-specific treatment effects unspecified. Without proper care, tests valid for sharp null hypotheses may be anti-conservative should only the weak null hold, creating the risk of misinterpretation when randomization tests are deployed in practice. We develop a general framework for unifying modes of inference for sharp and weak nulls, wherein a single procedure simultaneously delivers exact inference for sharp nulls and asymptotically valid inference for weak nulls. To do this, we employ randomization tests based upon prepivoted test statistics, wherein a test statistic is first transformed by a suitably constructed cumulative distribution function and its randomization distribution assuming the sharp null is then enumerated. For a large class of commonly employed test statistics, we show that prepivoting may be accomplished by employing the push-forward of a sample-based Gaussian measure based upon a suitably constructed covariance estimator. In essence, the approach enumerates the randomization distribution (assuming the sharp null) of a P-value for a large-sample test known to be valid under the weak null, and uses the resulting randomization distribution to perform inference. The versatility of the method is demonstrated through a host of examples, including rerandomized designs and regression-adjusted estimators in completely randomized designs.


翻译:在有限的人口因果推断中,精确的随机化测试可以针对明显的空虚假设,即充分估计缺失的潜在结果的假设,构建一个清晰的空虚假设,即充分估计缺失的潜在结果的假设。通常,对于弱小的空虚来说,对处理效果的样本平均值对特定值产生某种特定值,而对于特定主题的治疗效果则没有说明作用。在没有适当注意的情况下,对尖锐的空虚假设有效的测试可能是反保守性的,只有弱弱的空虚试验才具有误判的风险,在实际中采用随机测试试验试验试验结果时会产生误判的风险。我们为锐弱的空洞和弱的空虚弱的无效试验结果制定统一推断模式的一般框架,其中单一程序同时对锐利的空洞和弱的无效的无效结果结果作出精确的推断。为了做到这一点,我们根据预先预测的试验统计数据,对尖锐的空虚假设分布作用进行随机调整,我们表明,通过在压前推的平整前的平局方法进行精确的递增,通过根据压的正正变的平价计算,对空的计算,对准的天平比值进行一个基础的计算。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
An Optimal Transport Approach to Causal Inference
Arxiv
0+阅读 · 2021年8月12日
Arxiv
0+阅读 · 2021年8月11日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员