Current research on the advantages and trade-offs of using characters, instead of tokenized text, as input for deep learning models, has evolved substantially. New token-free models remove the traditional tokenization step; however, their efficiency remains unclear. Moreover, the effect of tokenization is relatively unexplored in sequence tagging tasks. To this end, we investigate the impact of tokenization when extracting information from documents and present a comparative study and analysis of subword-based and character-based models. Specifically, we study Information Extraction (IE) from biomedical texts. The main outcome is twofold: tokenization patterns can introduce inductive bias that results in state-of-the-art performance, and the character-based models produce promising results; thus, transitioning to token-free IE models is feasible.


翻译:当前有关使用字符而非标记文本作为深度学习模型输入的优势和折衷方案的研究已经取得了实质性进展。新的无标记模型消除了传统的分词步骤,但它们的效率仍不清晰。此外,在序列标记任务中,分词的影响相对未被探究。因此,我们研究了从文档中提取信息时分词的影响,并对基于子词和基于字符的模型进行了比较研究和分析。具体而言,我们研究了从生物医学文本中进行信息提取的问题。主要结果如下:分词模式可能会引入归纳偏差,从而产生最先进的性能。对于基于字符的模型产生了有希望的结果。因此,向无标记信息提取模型的转换是可行的。

0
下载
关闭预览

相关内容

将一个汉字序列切分成一个一个单独的词
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
什么是语义角色标注?
人工智能头条
18+阅读 · 2019年4月28日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
基于Lattice LSTM的命名实体识别
微信AI
47+阅读 · 2018年10月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
什么是语义角色标注?
人工智能头条
18+阅读 · 2019年4月28日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
基于Lattice LSTM的命名实体识别
微信AI
47+阅读 · 2018年10月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员