We study contextual search, a generalization of binary search in higher dimensions, which captures settings such as feature-based dynamic pricing. Standard formulations of this problem assume that agents act in accordance with a specific homogeneous response model. In practice, however, some responses may be adversarially corrupted. Existing algorithms heavily depend on the assumed response model being (approximately) accurate for all agents and have poor performance in the presence of even a few such arbitrary misspecifications. We initiate the study of contextual search when some of the agents can behave in ways inconsistent with the underlying response model. In particular, we provide two algorithms, one based on multidimensional binary search methods and one based on gradient descent. We show that these algorithms attain near-optimal regret in the absence of adversarial corruptions and their performance degrades gracefully with the number of such agents, providing the first results for contextual search in any adversarial noise model. Our techniques draw inspiration from learning theory, game theory, high-dimensional geometry, and convex analysis.
翻译:我们研究背景搜索,将二进制搜索概括到更高层面,从而捕捉到基于特征的动态定价等设置。 这一问题的标准配方假设代理商按照特定的单一响应模式行事。 但是,在实践中,有些反应可能是敌对性的。 现有的算法在很大程度上取决于假设的反应模式对所有代理商来说是(大约)准确的,即使存在一些任意的偏差,其性能也很差。 当某些代理商的行为方式与基本响应模式不一致时,我们开始研究背景搜索。特别是,我们提供了两种算法,一种基于多维的二进制搜索方法,另一种基于梯度下降。我们表明,这些算法在没有对抗性腐败的情况下,其性能接近于最佳的遗憾,与此类代理商的数量相比,为任何对抗性噪音模型的背景搜索提供了初步结果。我们的技术从学习理论、游戏理论、高维度的几何测量和对等分析中得到启发。