We propose a novel quadratic programming formulation for estimating the corruption levels in group synchronization, and use these estimates to solve this problem. Our objective function exploits the cycle consistency of the group and we thus refer to our method as detection and estimation of structural consistency (DESC). This general framework can be extended to other algebraic and geometric structures. Our formulation has the following advantages: it can tolerate corruption as high as the information-theoretic bound, it does not require a good initialization for the estimates of group elements, it has a simple interpretation, and under some mild conditions the global minimum of our objective function exactly recovers the corruption levels. We demonstrate the competitive accuracy of our approach on both synthetic and real data experiments of rotation averaging.
翻译:我们提出一种新的四级方案拟定办法,用于估计集团同步中的腐败程度,并利用这些估计来解决这一问题。我们的目标功能利用了集团的周期一致性,因此我们称我们的方法为结构一致性的探测和估计(DESC)。这个总框架可以扩展到其他代数和几何结构。我们的提法有以下优点:它可以容忍腐败,其程度可以像信息理论约束一样高,它不需要对集团要素的估计进行良好的初始化,它有一个简单的解释,在某些温和的条件下,我们目标功能的全球最低值完全恢复了腐败程度。我们展示了我们在合成数据和实际数据轮换实验中的方法具有竞争力的准确性。