Certifying the robustness of neural networks against adversarial attacks is essential to their reliable adoption in safety-critical systems such as autonomous driving and medical diagnosis. Unfortunately, state-of-the-art verifiers either do not scale to bigger networks or are too imprecise to prove robustness, limiting their practical adoption. In this work, we introduce GPUPoly, a scalable verifier that can prove the robustness of significantly larger deep neural networks than previously possible. The key technical insight behind GPUPoly is the design of custom, sound polyhedra algorithms for neural network verification on a GPU. Our algorithms leverage the available GPU parallelism and inherent sparsity of the underlying verification task. GPUPoly scales to large networks: for example, it can prove the robustness of a 1M neuron, 34-layer deep residual network in approximately 34.5 ms. We believe GPUPoly is a promising step towards practical verification of real-world neural networks.


翻译:证明神经网络对对抗性攻击的稳健性,对于在诸如自主驾驶和医学诊断等安全临界系统中可靠地采用神经网络至关重要。 不幸的是,最先进的验证员要么没有规模到更大的网络,要么过于不精确,无法证明网络的稳健性,限制了实际的采用。 在这项工作中,我们引入了GPUPPolly,这是一个可扩缩的验证器,可以证明比以前可能大得多的深层神经网络的稳健性。GPUPolly背后的关键技术洞察力是设计在GPU上进行神经网络核查的习惯、健全的多希德拉算法。 我们的算法利用了现有的GPU平行法和基本核查任务固有的松散性。 GPUPOLy对大型网络的衡量器:例如,它可以证明在大约34.5米内有1M神经、34层深海残余网络的稳健性。 我们认为GPUPolly是切实核查现实世界神经网络的一个有希望的步骤。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
45+阅读 · 2020年10月31日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年7月9日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
3+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员