Bike-sharing is a popular component of sustainable urban mobility. It requires anticipatory planning, e.g. of station locations and inventory, to balance expected demand and capacity. However, external factors such as extreme weather or glitches in public transport, can cause demand to deviate from baseline levels. Identifying such outliers keeps historic data reliable and improves forecasts. In this paper we show how outliers can be identified by clustering stations and applying a functional depth analysis. We apply our analysis techniques to the Washington D.C. Capital Bikeshare data set as the running example throughout the paper, but our methodology is general by design. Furthermore, we offer an array of meaningful visualisations to communicate findings and highlight patterns in demand. Last but not least, we formulate managerial recommendations on how to use both the demand forecast and the identified outliers in the bike-sharing planning process.
翻译:自行车共享是可持续城市流动性的受欢迎的组成部分,它需要预先规划,例如站点位置和库存,以平衡预期需求和能力;然而,极端天气或公共交通中的故障等外部因素可能导致需求偏离基线水平。查明此类外部线可使历史数据可靠,并改进预测。在本文件中,我们展示了集群站如何识别外部线,并应用功能深度分析。我们在整个文件中将分析技术应用于华盛顿哥伦比亚首都比凯沙尔数据集作为运行范例,但我们的方法是通用的。此外,我们还提供一系列有意义的可视化工具,以传达调查结果和突出需求模式。最后但并非最不重要的一点是,我们就如何在自行车共享规划过程中使用需求预测和已确定的外部线制定了管理建议。