Vision-language transformers (VL transformers) have shown impressive accuracy in cross-modal retrieval. However, most of the existing VL transformers use early-interaction dataflow that computes a joint representation for the text-image input. In the retrieval stage, such models need to infer on all the matched text-image combinations, which causes high computing costs. The goal of this paper is to decompose the early-interaction dataflow inside the pre-trained VL transformer to achieve acceleration while maintaining its outstanding accuracy. To achieve this, we propose a novel Vision-language Transformer Decomposing (VLDeformer) to modify the VL transformer as an individual encoder for a single image or text through contrastive learning, which accelerates retrieval speed by thousands of times. Meanwhile, we propose to compose bi-modal hard negatives for the contrastive learning objective, which enables the VLDeformer to maintain the outstanding accuracy of the backbone VL transformer. Extensive experiments on COCO and Flickr30k datasets demonstrate the superior performance of the proposed method. Considering both effectiveness and efficiency, VLDeformer provides a superior selection for cross-modal retrieval in the similar pre-training datascale.


翻译:视觉变压器(VL变压器)在跨模式检索中表现出了令人印象深刻的准确性。然而,大多数现有的VL变压器使用早期互动数据流,计算出文本图像输入的共同表示。在检索阶段,这些模型需要在所有匹配的文本图像组合中进行推断,这会造成高计算成本。本文件的目的是分解预先训练的VL变压器内部的早期互动数据流,以达到加速,同时保持其突出的准确性。为了实现这一目标,我们提议使用一个新的VL变压器(VLDerew)来修改VL变压器,作为单个的编码器,通过对比性学习来计算单一图像或文本,从而加快检索速度数千次。与此同时,我们提议将双式硬负法对对比性学习目标进行计算,使VLDeformer能保持最出色的VL变压器的精度。关于CO和Flick30k数据集的广泛实验显示了拟议方法的优异性性性表现。考虑到效果和效率和效率,VLDSordeformainal reviewal realitional 数据选择了一个高级的跨级检索。

0
下载
关闭预览

相关内容

【Tutorial】计算机视觉中的Transformer,98页ppt
专知会员服务
143+阅读 · 2021年10月25日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
VIP会员
相关VIP内容
【Tutorial】计算机视觉中的Transformer,98页ppt
专知会员服务
143+阅读 · 2021年10月25日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员