In this paper, we present a work in progress about a deep learning based approach for automatic code optimization in polyhedral compilers. The proposed technique explores combinations of affine and non-affine loop transformations to find the sequence of transformations that minimizes the execution time of a given program. This exploration is guided by a deep learning based cost model that evaluates the speedup that each sequence of transformations would yield. Preliminary results show that the proposed techniques achieve a 2.35x geometric mean speedup over state of the art polyhedral compilers (Pluto).
翻译:在本文中,我们介绍了一项关于在多面编译器中采用基于深层次学习的自动代码优化方法的工作进展。 拟议的技术探索了方形与非室状循环转换的组合, 以找到将特定程序执行时间减至最小的变换序列。 此项探索以一个基于深层次学习的成本模型为指导, 该模型评估了每个变换序列将产生的速度。 初步结果显示, 拟议的技术在艺术多元编译器( Pluto) 的状态上实现了2.35x几何平均加速。