Encoding classical inputs into quantum states is considered a quantum feature map to map classical data into a quantum Hilbert space. This feature map provides opportunities to incorporate quantum advantages into machine learning algorithms to be performed on near-term intermediate-scale quantum computers. While the quantum feature map has demonstrated its capability when combined with linear classification models in some specific applications, its expressive power from the theoretical perspective remains unknown. We prove that the quantum feature map is a universal approximator of continuous functions under its typical settings in many practical applications. We also study the capability of the quantum feature map in the classification of disjoint regions. Our work enables an important theoretical analysis to ensure that quantum-enhanced machine learning algorithms based on quantum feature maps can handle a broad class of machine learning tasks. In light of this, one can design a quantum machine learning model with more powerful expressivity.
翻译:将古典输入到量子状态中被认为是将古典数据映射成量子Hilbert空间的量子特征地图。 这个特征地图为将量子优势纳入近期中期中型量子计算机的机器学习算法提供了机会。 虽然量子特征地图在与某些具体应用中的线性分类模型相结合时展示了它的能力,但从理论角度看,它的表达力仍然未知。 我们证明量子特征地图是其典型环境中许多实际应用中连续功能的通用近似符。 我们还研究了脱节区域分类中的量子特征地图的能力。 我们的工作使得能够进行重要的理论分析,以确保基于量子特征地图的量子强化机学习算法能够处理广泛的机器学习任务。 有鉴于此,我们可以设计一个具有更强的表达性量子机器学习模型。