Few-shot learning aims to train a classifier that can generalize well when just a small number of labeled samples per class are given. We introduce Transductive Maximum Margin Classifier (TMMC) for few-shot learning. The basic idea of the classical maximum margin classifier is to solve an optimal prediction function that the corresponding separating hyperplane can correctly divide the training data and the resulting classifier has the largest geometric margin. In few-shot learning scenarios, the training samples are scarce, not enough to find a separating hyperplane with good generalization ability on unseen data. TMMC is constructed using a mixture of the labeled support set and the unlabeled query set in a given task. The unlabeled samples in the query set can adjust the separating hyperplane so that the prediction function is optimal on both the labeled and unlabeled samples. Furthermore, we leverage an efficient and effective quasi-Newton algorithm, the L-BFGS method to optimize TMMC. Experimental results on three standard few-shot learning benchmarks including miniImagenet, tieredImagenet and CUB suggest that our TMMC achieves state-of-the-art accuracies.
翻译:少见的学习目的是训练一个分类器, 当每类只提供少量贴标签的样本时, 就可以非常概括化。 我们引入了跨导最大边距分类器(TMMC) 以进行一些小片学习。 古典最大边距分类器的基本想法是解决一个最佳预测功能, 相应的高空分离机可以正确分割培训数据, 由此产生的分类器具有最大的几何差幅。 在一些短片的学习场景中, 培训样品稀缺, 不足以找到一个分离的超高机, 且对不可见的数据具有很好的概括能力。 TMMC 是在使用标签支持集和未贴标签的查询集成的混合物来构建的。 查询集中未贴标签的样本可以调整分离的超大平面, 从而让预测功能在标签和未贴标签的样本上都达到最佳。 此外, 我们利用高效的准牛顿算法, L- BFGS 方法来优化 TMMC 。 实验结果来自三个标准的、 标准几发的学习基准, 包括小型Iagenet、 级Imagenet 和 CUBIG CD 表示我们的 TMMURARA 达到状态的状态。