In 2008 Amanatidis, Green and Mihail introduced the Joint Degree Matrix (JDM) model to capture the fundamental difference in assortativity of networks in nature studied by the physical and life sciences and social networks studied in the social sciences. In 2014 Czabarka proposed a direct generalization of the JDM model, the Partition Adjacency Matrix (PAM) model. In the PAM model the vertices have specified degrees, and the vertex set itself is partitioned into classes. For each pair of vertex classes the number of edges between the classes in a graph realization is prescribed. In this paper we apply the new {\em skeleton graph} model to describe the same information as the PAM model. Our model is more convenient for handling problems with low number of partition classes or with special topological restrictions among the classes. We investigate two particular cases in detail: (i) when there are only two vertex classes and (ii) when the skeleton graph contains at most one cycle.


翻译:2008年,Amanatidis、Green和Mihail引入了联合学位矩阵模型(JDM),以了解由社会科学研究的物理和生命科学及社交网络所研究的自然网络在分布性方面的基本差异。2014年,Czabarka提议直接概括JDM模型,即分区相邻矩阵模型。在PAM模型中,顶端具有指定度,而顶端本身被分割为各类。每对顶端等级中,都规定了图表实现中各类别之间的边缘数。在本文件中,我们采用新的 ~em 骨骼图 模型来描述与 PAM 模型相同的信息。我们的模型更方便于处理小分区类或各类中特殊地形限制的问题。我们详细调查了两个特定案例:(一) 当只有两个顶端等级时,以及(二) 当骨骼图最多包含一个周期时。

0
下载
关闭预览

相关内容

PAM:Passive and Active Measurement Conference。 Explanation:被动和主动测量会议。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/conf/pam/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Arxiv
15+阅读 · 2018年4月5日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员