Jump functions are the {most-studied} non-unimodal benchmark in the theory of randomized search heuristics, in particular, evolutionary algorithms (EAs). They have significantly improved our understanding of how EAs escape from local optima. However, their particular structure -- to leave the local optimum one can only jump directly to the global optimum -- raises the question of how representative such results are. For this reason, we propose an extended class $\textsc{Jump}_{k,\delta}$ of jump functions that contain a valley of low fitness of width $\delta$ starting at distance $k$ from the global optimum. We prove that several previous results extend to this more general class: for all {$k \le \frac{n^{1/3}}{\ln{n}}$} and $\delta < k$, the optimal mutation rate for the $(1+1)$~EA is $\frac{\delta}{n}$, and the fast $(1+1)$~EA runs faster than the classical $(1+1)$~EA by a factor super-exponential in $\delta$. However, we also observe that some known results do not generalize: the randomized local search algorithm with stagnation detection, which is faster than the fast $(1+1)$~EA by a factor polynomial in $k$ on $\textsc{Jump}_k$, is slower by a factor polynomial in $n$ on some $\textsc{Jump}_{k,\delta}$ instances. Computationally, the new class allows experiments with wider fitness valleys, especially when they lie further away from the global optimum.


翻译:跳跃函数是随机搜索超常理论{ 随机搜索超常理论{ 特别是进化算法( EAs) 中的非单一模式基准。 它们极大地提高了我们对EAs如何逃离本地opima的理解。 然而, 它们的特殊结构 -- -- 离开本地最佳功能只能直接跳到全球最佳 -- 提出了这种结果如何具有代表性的问题。 为此, 我们提议在跳跃函数中增加一个包含宽度为美元=delta$的低谷值, 特别是进化算法( EAs) 。 我们证明, 之前的一些结果延伸到了这个更普通的类别 : $=k\le = le forest leg, $( 1+1) 美元=+ 美元=+ deltaxn} 。 当( 1+1) 美元为更低的低位值 。 快速的 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元=1) ( 美元= 美元= 美元=YEA) 更快速的运行速度比古典 美元= 美元= 美元= 美元= 美元= 美元= = = = = = = = 快速的 = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
0+阅读 · 2022年6月16日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员