Given two jointly distributed random variables $(X,Y)$, a functional representation of $X$ is a random variable $Z$ independent of $Y$, and a deterministic function $g(\cdot, \cdot)$ such that $X=g(Y,Z)$. The problem of finding a minimum entropy functional representation is known to be equivalent to the problem of finding a minimum entropy coupling where, given a collection of probability distributions $P_1, \dots, P_m$, the goal is to find a coupling $X_1, \dots, X_m$ ($X_i \sim P_i)$ with the smallest entropy $H_\alpha(X_1, \dots, X_m)$. This paper presents a new information spectrum converse, and applies it to obtain direct lower bounds on minimum entropy in both problems. The new results improve on all known lower bounds, including previous lower bounds based on the concept of majorization. In particular, the presented proofs leverage both - the information spectrum and the majorization - perspectives on minimum entropy couplings and functional representations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
76+阅读 · 2022年4月15日
专知会员服务
124+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月21日
Arxiv
13+阅读 · 2022年10月20日
VIP会员
相关VIP内容
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
76+阅读 · 2022年4月15日
专知会员服务
124+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员