Detecting objects based on language descriptions is a popular task that includes Open-Vocabulary object Detection (OVD) and Referring Expression Comprehension (REC). In this paper, we advance them to a more practical setting called Described Object Detection (DOD) by expanding category names to flexible language expressions for OVD and overcoming the limitation of REC to only grounding the pre-existing object. We establish the research foundation for DOD tasks by constructing a Description Detection Dataset ($D^3$), featuring flexible language expressions and annotating all described objects without omission. By evaluating previous SOTA methods on $D^3$, we find some troublemakers that fail current REC, OVD, and bi-functional methods. REC methods struggle with confidence scores, rejecting negative instances, and multi-target scenarios, while OVD methods face constraints with long and complex descriptions. Recent bi-functional methods also do not work well on DOD due to their separated training procedures and inference strategies for REC and OVD tasks. Building upon the aforementioned findings, we propose a baseline that largely improves REC methods by reconstructing the training data and introducing a binary classification sub-task, outperforming existing methods. Data and code is available at https://github.com/shikras/d-cube.
翻译:暂无翻译