We consider the problem of maintaining an approximate maximum independent set of geometric objects under insertions and deletions. We present data structures that maintain a constant-factor approximate maximum independent set for broad classes of fat objects in $d$ dimensions, where $d$ is assumed to be a constant, in sublinear \textit{worst-case} update time. This gives the first results for dynamic independent set in a wide variety of geometric settings, such as disks, fat polygons, and their high-dimensional equivalents. Our result is obtained via a two-level approach. First, we develop a dynamic data structure which stores all objects and provides an approximate independent set when queried, with output-sensitive running time. We show that via standard methods such a structure can be used to obtain a dynamic algorithm with \textit{amortized} update time bounds. Then, to obtain worst-case update time algorithms, we develop a generic deamortization scheme that with each insertion/deletion keeps (i) the update time bounded and (ii) the number of changes in the independent set constant. We show that such a scheme is applicable to fat objects by showing an appropriate generalization of a separator theorem. Interestingly, we show that our deamortization scheme is also necessary in order to obtain worst-case update bounds: If for a class of objects our scheme is not applicable, then no constant-factor approximation with sublinear worst-case update time is possible. We show that such a lower bound applies even for seemingly simple classes of geometric objects including axis-aligned rectangles in the plane.
翻译:我们考虑的是保持大约最独立的一组插入和删除的几何对象的问题。 我们提出数据结构, 维持一个不变因素, 大致为最独立的, 以美元为维度, 假设美元是一个常数, 在亚线性\ textit{ worst- case} 更新时间中, 以亚线性 \ textit{ worst- case} 更新时间。 这为动态独立设置提供了初步结果, 包括磁盘、 脂肪多边形及其高等量。 我们的结果是通过两个层次的方法获得的。 首先, 我们开发一个动态数据结构, 保存所有对象, 并在询问时提供一个大致独立的独立的、 独立的、 且对输出敏感、 运行时间的时间范围 。 我们通过标准方法显示, 这种结构可以用来获得动态的算法, 在最坏的情况下更新时间算法, 我们开发了一个通用的解析法, 在最差的每个插入/ 直线上都保持( i) 更新时间, 并且 (ii) 在独立设置的直径性对象中, 显示一个最差的直径性的直径性天体更新。 我们显示, 直径性的直径性的直线性计划是用来显示, 直径性的直线性的直线性的直系, 以显示我们的直线性平至直线性向直线性向的直线性, 。