The current COVID-19 pandemic has shown us that we are still facing unpredictable challenges in our society. The necessary constrain on social interactions affected heavily how we envision and prepare the future of social robots and artificial agents in general. Adapting current affective perception models towards constrained perception based on the hard separation between facial perception and affective understanding would help us to provide robust systems. In this paper, we perform an in-depth analysis of how recognizing affect from persons with masks differs from general facial expression perception. We evaluate how the recently proposed FaceChannel adapts towards recognizing facial expressions from persons with masks. In Our analysis, we evaluate different training and fine-tuning schemes to understand better the impact of masked facial expressions. We also perform specific feature-level visualization to demonstrate how the inherent capabilities of the FaceChannel to learn and combine facial features change when in a constrained social interaction scenario.
翻译:目前的COVID-19大流行向我们表明,我们仍面临着社会上无法预测的挑战。社会互动方面的必要限制严重影响了我们如何设想和准备社会机器人和人造剂的未来。根据面部感知和感知的硬分辨,调整目前的感知模式,使之适应有限的观念,有助于我们提供强有力的系统。在本文件中,我们深入分析了戴面罩的人的认知影响与面部表情的一般感觉有何不同。我们评估了最近提出的面部卫生网如何适应于识别戴面罩的人的面部表情。在我们的分析中,我们评估了不同的培训和微调计划,以更好地了解面部面部面部表情的影响。我们还进行了具体的地貌水平直观化,以表明在受限制的社会互动环境中,脸部的内在能力是如何学习和结合面部特征变化的。