This paper introduces Chance Constrained Gaussian Process-Motion Planning (CCGP-MP), a motion planning algorithm for robotic systems under motion and state estimate uncertainties. The paper's key idea is to capture the variations in the distance-to-collision measurements caused by the uncertainty in state estimation techniques using a Gaussian Process (GP) model. We formulate the planning problem as a chance constraint problem and propose a deterministic constraint that uses the modeled distance function to verify the chance-constraints. We apply Simplicial Homology Global Optimization (SHGO) approach to find the global minimum of the deterministic constraint function along the trajectory and use the minimum value to verify the chance-constraints. Under this formulation, we can show that the optimization function is smooth under certain conditions and that SHGO converges to the global minimum. Therefore, CCGP-MP will always guarantee that all points on a planned trajectory satisfy the given chance-constraints. The experiments in this paper show that CCGP-MP can generate paths that reduce collisions and meet optimality criteria under motion and state uncertainties. The implementation of our robot models and path planning algorithm can be found on GitHub.
翻译:本文介绍Cances Constraced Gaussian process-motion Plan (CCGP-MP),这是在运动和状态估计不确定情况下对机器人系统的一种运动规划算法。 本文的关键思想是捕捉由于使用高山进程(GP)模型进行国家估算技术的不确定性造成的距离到水平测量的变异。 我们将规划问题作为一种机会制约问题提出,并提出一种决定性的限制因素,即使用模型的距离功能来核查机会限制。 我们运用了模拟的距离功能来对全球优化进行测试。 我们运用了简化式全球优化(SHGGO) 方法来沿轨迹找到全球最小的确定性约束功能,并使用最低值来核查机会限制。 根据这一提法,我们可以表明优化功能在某些条件下是平稳的,并且SHGGGOGO将达到全球最低值。 因此, CCG-MP将始终保证计划轨迹上的所有点都能满足给定的机会限制。 本文的实验表明, CCGGP- MP 能够产生减少碰撞并满足运动和状态下的最佳标准。 在移动和状态中, 我们的机器人模型和定式的路径上可以找到。