We study protecting a user's data (images in this work) against a learner's unauthorized use in training neural networks. It is especially challenging when the user's data is only a tiny percentage of the learner's complete training set. We revisit the traditional watermarking under modern deep learning settings to tackle the challenge. We show that when a user watermarks images using a specialized linear color transformation, a neural network classifier will be imprinted with the signature so that a third-party arbitrator can verify the potentially unauthorized usage of the user data by inferring the watermark signature from the neural network. We also discuss what watermarking properties and signature spaces make the arbitrator's verification convincing. To our best knowledge, this work is the first to protect an individual user's data ownership from unauthorized use in training neural networks.
翻译:我们研究如何保护用户的数据(本作品中的图像),防止学习者未经授权使用神经网络。当用户的数据只是学习者完整培训的一小部分时,这尤其具有挑战性。我们重新审视现代深层学习环境中的传统水标记,以应对这一挑战。我们显示,当用户使用专门的线性颜色转换图象时,将打印神经网络分类器,以便第三方仲裁员能够通过从神经网络推断水标记签字来核实用户数据的潜在未经授权的使用。我们还讨论水标记属性和签字空间如何使仲裁员的核实具有说服力。据我们所知,这项工作首先保护个人用户的数据所有权,防止他们未经授权使用神经网络。