Automatic action quality assessment (AQA) has attracted more interests due to its wide applications. However, existing AQA methods usually employ the multi-branch models to generate multiple scores, which is not flexible for dealing with a variable number of judges. In this paper, we propose a novel Uncertainty-Driven AQA (UD-AQA) model to generate multiple predictions only using one single branch. Specifically, we design a CVAE (Conditional Variational Auto-Encoder) based module to encode the uncertainty, where multiple scores can be produced by sampling from the learned latent space multiple times. Moreover, we output the estimation of uncertainty and utilize the predicted uncertainty to re-weight AQA regression loss, which can reduce the contributions of uncertain samples for training. We further design an uncertainty-guided training strategy to dynamically adjust the learning order of the samples from low uncertainty to high uncertainty. The experiments show that our proposed method achieves new state-of-the-art results on the Olympic events MTL-AQA and surgical skill JIGSAWS datasets.


翻译:自动行动质量评估(AQA)因其广泛应用而吸引了更多的兴趣。然而,现有的AQA方法通常采用多部门模式产生多重评分,而这种模式对于处理法官人数的变化并不灵活。在本文件中,我们建议采用新的不确定-Driven AQA(UD-AQA)模型,只用一个分支来产生多重预测。具体地说,我们设计了一个基于CVAE(有条件变换自动编码器)的模块,以编码不确定性,通过从学习的潜藏空间多次取样可以产生多重得分。此外,我们提出不确定性的估计并利用预测的不确定性来重新加权AQA回归损失,这可以减少不确定样本对培训的贡献。我们进一步设计了一种不确定性指导培训战略,以动态地调整从低不确定性到高度不确定性的样本的学习顺序。实验表明,我们拟议的方法在奥林匹克事件MTL-AQA和外科技能JGSAWS数据集方面取得了新的最新结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月23日
Arxiv
30+阅读 · 2021年7月7日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员