In this paper, we demonstrate a novel algorithm that uses ellipse fitting to estimate the bounding box rotation angle and size with the segmentation(mask) on the target for online and real-time visual object tracking. Our method, SiamMask_E, improves the bounding box fitting procedure of the state-of-the-art object tracking algorithm SiamMask and still retains a fast-tracking frame rate (80 fps) on a system equipped with GPU (GeForce GTX 1080 Ti or higher). We tested our approach on the visual object tracking datasets (VOT2016, VOT2018, and VOT2019) that were labeled with rotated bounding boxes. By comparing with the original SiamMask, we achieved an improved Accuracy of 0.645 and 0.303 EAO on VOT2019, which is 0.049 and 0.02 higher than the original SiamMask. The implementation is available on GitHub: https://github.com/baoxinchen/siammask_e.
翻译:在本文中,我们展示了一种新颖的算法,它使用精密度来估计在线和实时视觉物体跟踪目标的捆绑框旋转角度和大小。我们的方法,SiamMask_E,改进了最先进的物体跟踪算法SiamMask的捆绑盒安装程序,在配备GPU(GeForce GTX 1080 Ti 或更高)的系统中仍然保留快速跟踪框架率(80英尺)。我们测试了我们用旋转的捆绑盒标注的视觉物体跟踪数据集(VOT2016、VOT2018和VOT2019)。我们与最初的SiamMask相比,在VOT2019上实现了0.645和0.303 EAO的绑绑绑定程序,比原SiamMask高出0.049和0.02。在GitHub: https://github.com/baoxinchen/siammask_e)上的应用。