Full-waveform inversion (FWI) is today a standard process for the inverse problem of seismic imaging. PDE-constrained optimization is used to determine unknown parameters in a wave equation that represent geophysical properties. The objective function measures the misfit between the observed data and the calculated synthetic data, and it has traditionally been the least-squares norm. In a sequence of papers, we introduced the Wasserstein metric from optimal transport as an alternative misfit function for mitigating the so-called cycle skipping, which is the trapping of the optimization process in local minima. In this paper, we first give a sharper theorem regarding the convexity of the Wasserstein metric as the objective function. We then focus on two new issues. One is the necessary normalization of turning seismic signals into probability measures such that the theory of optimal transport applies. The other, which is beyond cycle skipping, is the inversion for parameters below reflecting interfaces. For the first, we propose a class of normalizations and prove several favorable properties for this class. For the latter, we demonstrate that FWI using optimal transport can recover geophysical properties from domains where no seismic waves travel through. We finally illustrate these properties by the realistic application of imaging salt inclusions, which has been a significant challenge in exploration geophysics.
翻译:全波变换(FWI) 是当今地震成像反反问题的标准过程。 PDE 限制的优化用于确定代表地球物理特性的波形方程式中的未知参数。 客观函数测量观测到的数据与计算合成数据之间的误差, 传统上是最低方位规范。 在一系列论文中, 我们引入了瓦塞斯坦最佳运输标准作为减轻所谓循环跳转的替代错误功能, 即优化进程在本地迷你马的陷阱。 在本文中, 我们首先给出关于瓦塞尔斯坦度度量度的共性更尖锐的理论, 作为目标函数。 我们随后集中关注两个新问题。 一个是将地震信号转化为概率测量标准的必要正常化, 以便适用最佳运输理论。 另一个是超越周期的, 是对以下反映界面的参数的转换。 首先, 我们提出一种正常化的分类, 并证明这一类的几种有利特性。 对于后者, 我们证明FWI 使用最佳运输可以恢复地球物理特性作为目标功能。 我们随后集中关注两个新问题。 一个是, 将地震信号转化为地球物理特性的物理特性, 通过地震物理成像学的特性, 我们通过地震物理成一个空间的轨道旅行, 展示了这些物理成一个现实特性, 。