Full-waveform inversion (FWI) is today a standard process for the inverse problem of seismic imaging. PDE-constrained optimization is used to determine unknown parameters in a wave equation that represent geophysical properties. The objective function measures the misfit between the observed data and the calculated synthetic data, and it has traditionally been the least-squares norm. In a sequence of papers, we introduced the Wasserstein metric from optimal transport as an alternative misfit function for mitigating the so-called cycle skipping, which is the trapping of the optimization process in local minima. In this paper, we first give a sharper theorem regarding the convexity of the Wasserstein metric as the objective function. We then focus on two new issues. One is the necessary normalization of turning seismic signals into probability measures such that the theory of optimal transport applies. The other, which is beyond cycle skipping, is the inversion for parameters below reflecting interfaces. For the first, we propose a class of normalizations and prove several favorable properties for this class. For the latter, we demonstrate that FWI using optimal transport can recover geophysical properties from domains where no seismic waves travel through. We finally illustrate these properties by the realistic application of imaging salt inclusions, which has been a significant challenge in exploration geophysics.


翻译:全波变换(FWI) 是当今地震成像反反问题的标准过程。 PDE 限制的优化用于确定代表地球物理特性的波形方程式中的未知参数。 客观函数测量观测到的数据与计算合成数据之间的误差, 传统上是最低方位规范。 在一系列论文中, 我们引入了瓦塞斯坦最佳运输标准作为减轻所谓循环跳转的替代错误功能, 即优化进程在本地迷你马的陷阱。 在本文中, 我们首先给出关于瓦塞尔斯坦度度量度的共性更尖锐的理论, 作为目标函数。 我们随后集中关注两个新问题。 一个是将地震信号转化为概率测量标准的必要正常化, 以便适用最佳运输理论。 另一个是超越周期的, 是对以下反映界面的参数的转换。 首先, 我们提出一种正常化的分类, 并证明这一类的几种有利特性。 对于后者, 我们证明FWI 使用最佳运输可以恢复地球物理特性作为目标功能。 我们随后集中关注两个新问题。 一个是, 将地震信号转化为地球物理特性的物理特性, 通过地震物理成像学的特性, 我们通过地震物理成一个空间的轨道旅行, 展示了这些物理成一个现实特性, 。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
53+阅读 · 2020年9月7日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
31+阅读 · 2020年3月26日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
53+阅读 · 2020年9月7日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
31+阅读 · 2020年3月26日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员