In this paper, we study communication-efficient distributed stochastic gradient descent (SGD) with data sets of users distributed over a certain area and communicating through wireless channels. Since the time for one iteration in the proposed approach is independent of the number of users, it is well-suited to scalable distributed SGD. Furthermore, since the proposed approach is based on preamble-based random access, which is widely adopted for machine-type communication (MTC), it can be easily employed for training models with a large number of devices in various Internet-of-Things (IoT) applications where MTC is used for their connectivity. For fading channel, we show that noncoherent combining can be used. As a result, no channel state information (CSI) estimation is required. From analysis and simulation results, we can confirm that the proposed approach is not only scalable, but also provides improved performance as the number of devices increases.


翻译:在本文中,我们研究通信效率分布式随机梯度下降(SGD),其用户数据集分布于某一区域,并通过无线频道进行通信。由于拟议方法中一个迭代的时间与用户数量无关,因此完全适合可缩放分布式 SGD。此外,由于拟议方法基于序言随机访问,广泛用于机器类型通信(MTC),因此可以很容易地用于培训模式,培训模式中有大量设备,在各种互联网-Things(IoT)应用中,MTC用于连接。关于淡化通道,我们表明可以使用非相容的组合。因此,不需要频道状态信息估算。根据分析和模拟结果,我们可以确认,拟议的方法不仅可以缩放,而且随着装置数量的增加,还提高了性能。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Top
微信扫码咨询专知VIP会员