Galton's rank order statistic is one of the oldest statistical tools for two-sample comparisons. It is also a very natural index to measure departures from stochastic dominance. Yet, its asymptotic behaviour has been investigated only partially, under restrictive assumptions. This work provides a comprehensive {study} of this behaviour, based on the analysis of the so-called contact set (a modification of the set in which the quantile functions coincide). We show that a.s. convergence to the population counterpart holds if and only if {the} contact set has zero Lebesgue measure. When this set is finite we show that the asymptotic behaviour is determined by the local behaviour of a suitable reparameterization of the quantile functions in a neighbourhood of the contact points. Regular crossings result in standard rates and Gaussian limiting distributions, but higher order contacts (in the sense introduced in this work) or contacts at the extremes of the supports may result in different rates and non-Gaussian limits.


翻译:Galton的等级顺序统计是用于两样抽样比较的最古老的统计工具之一。 它也是一个非常自然的指数,用来衡量偏离随机支配地位的情况。 然而,根据限制性假设,对它的无药可治行为只进行了部分调查。 这项工作根据对所谓的接触组的分析(对量函数重合的数据集的修改),为这种行为提供了全面的{研究}。 我们显示,a.s.s.如果而且只有当[特 接触组具有零 Lebesgue 的测量值时,与人口对应方的趋同才会维持。 当设定为有限时,我们将显示,无药可治行为是由联络点附近对四分功能进行适当重新校准的当地行为所决定的。 定期过境导致标准比率和高斯限制分布,但更高排序的接触(在这项工作中引入的意义上)或最极端支持点的接触可能会导致不同的比率和非Gaussian限制。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月28日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员