In this paper we present a novel class of asymptotic consistent exponential-type integrators for Klein-Gordon-Schr\"odinger systems that capture all regimes from the slowly varying classical regime up to the highly oscillatory non-relativistic limit regime. We achieve convergence of order one and two that is uniform in $c$ without any time step size restrictions. In particular, we establish an explicit relation between gain in negative powers of the potentially large parameter $c$ in the error constant and loss in derivative.
翻译:在本文中,我们为克莱因-哥顿-施尔格-施尔格格格尼格系统展示了新型的无药可治的一致指数型集成器,这些集成器覆盖了从缓慢变化的古典制度到高度不稳定的非相对性限制制度的所有制度,我们实现了一号和二号秩序的趋同,一号和二号秩序以美元统一,没有任何时间步骤大小限制,我们特别在错误常数中潜在大参数(c)的负功率收益和衍生物损失之间建立了明确的关系。