Social Networking Sites (SNS) are one of the most important ways of communication. In particular, microblogging sites are being used as analysis avenues due to their peculiarities (promptness, short texts...). There are countless researches that use SNS in novel manners, but machine learning has focused mainly in classification performance rather than interpretability and/or other goodness metrics. Thus, state-of-the-art models are black boxes that should not be used to solve problems that may have a social impact. When the problem requires transparency, it is necessary to build interpretable pipelines. Although the classifier may be interpretable, resulting models are too complex to be considered comprehensible, making it impossible for humans to understand the actual decisions. This paper presents a feature selection mechanism that is able to improve comprehensibility by using less but more meaningful features while achieving good performance in microblogging contexts where interpretability is mandatory. Moreover, we present a ranking method to evaluate features in terms of statistical relevance and bias. We conducted exhaustive tests with five different datasets in order to evaluate classification performance, generalisation capacity and complexity of the model. Results show that our proposal is better and the most stable one in terms of accuracy, generalisation and comprehensibility.
翻译:社交网络站点(SNS)是最重要的沟通方式之一。 特别是,微博客站点因其特殊性( 快速性、 短文本...)而被用作分析渠道。 有许多研究以新颖的方式使用SNS, 但机器学习主要集中于分类性能, 而不是可解释性和/或其他良好指标。 因此, 最先进的模型是黑盒, 不应用来解决可能具有社会影响的问题。 当问题需要透明度时, 有必要建立可解释的管道。 虽然分类器可能可解释, 由此产生的模型可能过于复杂, 无法让人理解, 使得人类无法理解实际决定。 本文展示了一个特征选择机制, 能够通过使用较少但更有意义的特征来提高可解释性, 同时在必须进行解释的微博环境中取得良好的性能。 此外, 我们提出了一个评估统计相关性和偏差特征的排序方法。 我们用五种不同的数据集进行了详尽的测试, 以评价分类性能、 概括性能和复杂性为目的, 最精确性地展示了我们的建议。