Network scientists have shown that there is great value in studying pairwise interactions between components in a system. From a linear algebra point of view, this involves defining and evaluating functions of the associated adjacency matrix. Recent work indicates that there are further benefits from accounting directly for higher order interactions, notably through a hypergraph representation where an edge may involve multiple nodes. Building on these ideas, we motivate, define and analyze a class of spectral centrality measures for identifying important nodes and hyperedges in hypergraphs, generalizing existing network science concepts. By exploiting the latest developments in nonlinear Perron-Frobenius theory, we show how the resulting constrained nonlinear eigenvalue problems have unique solutions that can be computed efficiently via a nonlinear power method iteration. We illustrate the measures on realistic data sets.
翻译:网络科学家们已经表明,研究系统各组成部分之间的对称互动具有巨大的价值。 从线性代数的观点来看,这涉及界定和评估相关相邻矩阵的功能。最近的工作表明,直接核算更高顺序互动还有进一步的好处,尤其是通过高空代表法,其中边缘可能涉及多个节点。基于这些想法,我们激励、定义和分析一组光谱中心度测量标准,用以识别高空中的重要节点和高端,概括现有的网络科学概念。我们利用非线性 Perron-Frobenius理论的最新发展,展示了由此产生的限制非线性电子价值问题是如何产生独特的解决办法的,可以通过非线性动力转换法有效计算。我们介绍了关于现实数据集的措施。