Many well-known, real-world problems involve dynamic data which describe the relationship among the entities. Hypergraphs are powerful combinatorial structures that are frequently used to model such data. For many of today's data-centric applications, this data is streaming; new items arrive continuously, and the data grows with time. With paradigms such as Internet of Things and Edge Computing, such applications become more natural and more practical. In this work, we assume a streaming model where the data is modeled as a hypergraph, which is generated at the edge. This data then partitioned and sent to remote nodes via an algorithm running on a memory-restricted device such as a single board computer. Such a partitioning is usually performed by taking a connectivity metric into account to minimize the communication cost of later analyses that will be performed in a distributed fashion. Although there are many offline tools that can partition static hypergraphs excellently, algorithms for the streaming settings are rare. We analyze a well-known algorithm from the literature and significantly improve its running time by altering its inner data structure. For instance, on a medium-scale hypergraph, the new algorithm reduces the runtime from 17800 seconds to 10 seconds. We then propose sketch- and hash-based algorithms, as well as ones that can leverage extra memory to store a small portion of the data to enable the refinement of partitioning when possible. We experimentally analyze the performance of these algorithms and report their run times, connectivity metric scores, and memory uses on a high-end server and four different single-board computer architectures.


翻译:许多众所周知的、真实世界问题涉及动态数据,描述各实体之间的关系。 高清是强大的组合结构, 经常用来模拟这些数据。 对于当今许多以数据为中心的应用程序来说, 此数据是流式的; 新项目不断到达, 数据随着时间增长。 随着诸如Tings Internet和Edge Econtal等范例的出现, 此类应用程序变得更加自然和实用。 在这项工作中, 我们假设一个流式模型, 数据建为超光速模型, 在边缘生成。 这些数据随后通过一个在存储器( 如单一的计算机)上运行的算法进行分割并发送到远程节点。 对于许多今天的数据, 此数据是流式的流式结构。 对于许多以流式计算机为模型的模型, 这些数据是强大的。 对于一个在存储时运行的存储器, 新的算法通常通过一个连接度衡量标准来进行, 以最小的连接度来减少以后分析的通信成本成本。 当我们从一个中等比例的超时, 将开始一个单一的直径的直径的直径直达的直径直达时间段, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
3+阅读 · 2018年12月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员