For a state $\rho_{A_1^n B}$, we call a sequence of states $(\sigma_{A_1^k B}^{(k)})_{k=1}^n$ an approximation chain if for every $1 \leq k \leq n$, $\rho_{A_1^k B} \approx_\epsilon \sigma_{A_1^k B}^{(k)}$. In general, it is not possible to lower bound the smooth min-entropy of such a $\rho_{A_1^n B}$, in terms of the entropies of $\sigma_{A_1^k B}^{(k)}$ without incurring very large penalty factors. In this paper, we study such approximation chains under additional assumptions. We begin by proving a simple entropic triangle inequality, which allows us to bound the smooth min-entropy of a state in terms of the R\'enyi entropy of an arbitrary auxiliary state while taking into account the smooth max-relative entropy between the two. Using this triangle inequality, we create lower bounds for the smooth min-entropy of a state in terms of the entropies of its approximation chain in various scenarios. In particular, utilising this approach, we prove an approximate version of entropy accumulation and also provide a solution to the source correlation problem in quantum key distribution.
翻译:暂无翻译