Reconstructing materials in the real world has always been a difficult problem in computer graphics. Accurately reconstructing the material in the real world is critical in the field of realistic rendering. Traditionally, materials in computer graphics are mapped by an artist, then mapped onto a geometric model by coordinate transformation, and finally rendered with a rendering engine to get realistic materials. For opaque objects, the industry commonly uses physical-based bidirectional reflectance distribution function (BRDF) rendering models for material modeling. The commonly used physical-based rendering models are Cook-Torrance BRDF, Disney BRDF. In this paper, we use the Cook-Torrance model to reconstruct the materials. The SVBRDF material parameters include Normal, Diffuse, Specular and Roughness. This paper presents a Diffuse map guiding material estimation method based on the Generative Adversarial Network(GAN). This method can predict plausible SVBRDF maps with global features using only a few pictures taken by the mobile phone. The main contributions of this paper are: 1) We preprocess a small number of input pictures to produce a large number of non-repeating pictures for training to reduce over-fitting. 2) We use a novel method to directly obtain the guessed diffuse map with global characteristics, which provides more prior information for the training process. 3) We improve the network architecture of the generator so that it can generate fine details of normal maps and reduce the possibility to generate over-flat normal maps. The method used in this paper can obtain prior knowledge without using dataset training, which greatly reduces the difficulty of material reconstruction and saves a lot of time to generate and calibrate datasets.
翻译:在真实世界中重建材料始终是计算机图形的一个难题。 在真实世界中准确重建材料在真实世界中至关重要。 传统上, 计算机图形中的材料由艺术家绘制, 然后通过协调转换绘制到几何模型, 最后用一个成文引擎制作, 以获得现实的材料。 对于不透明对象, 行业通常使用基于物理的双向反射分布功能( BRDF) 提供材料建模模型。 通常使用的物理平流模型是 Cook- Torrance BRDF, Disney BRDF 。 在本文中, 我们使用Cook- Torrance 模型来重建材料。 SVBRDF 材料参数由艺术家绘制, 然后通过协调转换成一个几何模型, 并用此模型来指导材料估算方法。 对于Generational Aversarial 网络(GAN) 来说, 这个方法可以预测具有全球特征的 SVBRDFDF地图。 通常使用的物理绘制模型是 Cook- Torrance BRADF 。 。 这个文件的主要贡献是:(1) 我们先处理一个小的输入图片, 来不使用一个精细的图像, 来生成方法来制作一个不使用这个方法来生成, 来生成一个不易变校正图, 来制作方法来制作一个新的的模型, 用来制作一个用来制作一个比前的模型用来制作方法来生成的模型, 用来制作一个新的方法来生成一个方法来制作一个方法来制作一个方法来制作一个更精确的模型, 来制作一个方法, 并用来制作一个更精确的图。