Dynamic techniques are a scalable and effective way to analyze concurrent programs. Instead of analyzing all behaviors of a program, these techniques detect errors by focusing on a single program execution. Often a crucial step in these techniques is to define a causal ordering between events in the execution, which is then computed using vector clocks, a simple data structure that stores logical times of threads. The two basic operations of vector clocks, namely join and copy, require $\Theta(k)$ time, where $k$ is the number of threads. Thus they are a computational bottleneck when $k$ is large. In this work, we introduce tree clocks, a new data structure that replaces vector clocks for computing causal orderings in program executions. Joining and copying tree clocks takes time that is roughly proportional to the number of entries being modified, and hence the two operations do not suffer the a-priori $\Theta(k)$ cost per application. We show that when used to compute the classic happens-before (HB) partial order, tree clocks are optimal, in the sense that no other data structure can lead to smaller asymptotic running time. Moreover, we demonstrate that tree clocks can be used to compute other partial orders, such as schedulable-happens-before (SHB) and the standard Mazurkiewicz (MAZ) partial order, and thus are a versatile data structure. Our experiments show that just by replacing vector clocks with tree clocks, the computation becomes from $2.02 \times$ faster (MAZ) to $2.66 \times$ (SHB) and $2.97 \times$ (HB) on average per benchmark. These results illustrate that tree clocks have the potential to become a standard data structure with wide applications in concurrent analyses.


翻译:动态技术是分析并行程序的一种可缩放和有效的方法。 这些技术不是分析一个程序的所有行为, 而是分析一个程序的所有行为, 而是通过集中执行一个程序来检测错误。 这些技术中的一个关键步骤通常是定义执行中的事件之间的因果关系, 然后用矢量时钟来计算。 这个简单的数据结构可以存储线条的逻辑时间。 矢量时钟的两个基本操作, 即连接和复制, 需要 $\ The( k) 时间, 即 $k$ 是线索的数量。 因此, 当一个程序大时, 这些技术不是分析错误。 在这项工作中, 我们引入树时钟, 一个新的数据结构, 取代在程序执行中计算因果关系命令时的矢量时钟。 加入和复制树钟需要的时间与正在修改的条目数量大致成正比。 矢量时钟的两个基本操作不需要花费1美元\\ Theta( k) 美元, 每个应用程序的费用。 我们显示, 当使用经典的时( HB) 部分程序是最佳的 。 在其它数据结构中, 没有其它数据结构可以显示部分时间 。 因此, AS- be lade ladeal- h ladeal or- dal or- deal rode lax, lax lax lax 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员