Cold-start problem is still a very challenging problem in recommender systems. Fortunately, the interactions of the cold-start users in the auxiliary source domain can help cold-start recommendations in the target domain. How to transfer user's preferences from the source domain to the target domain, is the key issue in Cross-domain Recommendation (CDR) which is a promising solution to deal with the cold-start problem. Most existing methods model a common preference bridge to transfer preferences for all users. Intuitively, since preferences vary from user to user, the preference bridges of different users should be different. Along this line, we propose a novel framework named Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR). Specifically, a meta network fed with users' characteristic embeddings is learned to generate personalized bridge functions to achieve personalized transfer of preferences for each user. To learn the meta network stably, we employ a task-oriented optimization procedure. With the meta-generated personalized bridge function, the user's preference embedding in the source domain can be transformed into the target domain, and the transformed user preference embedding can be utilized as the initial embedding for the cold-start user in the target domain. Using large real-world datasets, we conduct extensive experiments to evaluate the effectiveness of PTUPCDR on both cold-start and warm-start stages. The code has been available at https://github.com/easezyc/WSDM2022-PTUPCDR.


翻译:冷点启动问题仍然是推荐者系统中一个极具挑战性的问题。 幸运的是, 冷点启动用户在辅助源域中的互动有助于在目标域中提出冷点启动建议。 如何将用户的偏好从源域转移到目标域。 如何将用户的偏好从源域转移到目标域。 如何将用户的偏好从源域转移到目标域, 是交叉域建议( CDR) 中的一个关键问题 。 多数现有方法都以共同偏好桥为模式, 为所有用户传输偏好。 由于用户的偏好不同, 不同用户的偏爱桥梁应该不同。 沿着这条线, 我们提议了一个名为“ 个人化” 的“ 用户偏好” 框架。 具体地说, 如何将用户特有的嵌入的元化连接功能传输到目标域, 如何生成针对每个用户的个化连接功能转移。 要深入了解元网络,我们使用一个面向任务化的个人化的优化连接功能, 可以将用户嵌入源域域域, 将用户偏好的用户偏好存储/ 。 将用户偏好点嵌入系统数据库, 。 正在使用“ 运行数据库”, 将用户端域的冷点运行中,, 运行中, 正在使用“ 将用户端端端端域进行用户端域的冷端域的慢点,,, 以用户端端域进行用户端端域的慢点, 。

0
下载
关闭预览

相关内容

【AAAI2021】元学习器的冷启动序列推荐
专知会员服务
40+阅读 · 2020年12月19日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Context / Sequential / Session RS的区别
机器学习与推荐算法
3+阅读 · 2020年6月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2019年10月11日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
VIP会员
相关VIP内容
【AAAI2021】元学习器的冷启动序列推荐
专知会员服务
40+阅读 · 2020年12月19日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
相关资讯
Context / Sequential / Session RS的区别
机器学习与推荐算法
3+阅读 · 2020年6月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员