Language has always been one of humanity's defining characteristics. Visual Language Identification (VLI) is a relatively new field of research that is complex and largely understudied. In this paper, we present a preliminary study in which we use linguistic information as a soft biometric trait to enhance the performance of a visual (auditory-free) identification system based on lip movement. We report a significant improvement in the identification performance of the proposed visual system as a result of the integration of these data using a score-based fusion strategy. Methods of Deep and Machine Learning are considered and evaluated. To the experimentation purposes, the dataset called laBial Articulation for the proBlem of the spokEn Language rEcognition (BABELE), consisting of eight different languages, has been created. It includes a collection of different features of which the spoken language represents the most relevant, while each sample is also manually labelled with gender and age of the subjects.


翻译:视觉语言识别(VLI)是一个相对较新的研究领域,比较复杂,而且基本上研究不足。在本论文中,我们提出了一项初步研究,我们利用语言信息作为软生物鉴别特征,用嘴唇运动来提高视觉(不看书)识别系统的性能。我们报告说,由于采用基于分数的融合战略整合这些数据,拟议视觉系统的识别性能有了显著改善。考虑和评估深层和机器学习方法。为了实验目的,创建了由八种不同语言组成的SpokEn 语言(BABELE)ProBlem(BABELE)数据集,该数据集由八种不同语言组成,包括一个不同特征集,语言代表最相关的语言,而每个样本也用手动标有主题的性别和年龄。</s>

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
15+阅读 · 2019年6月25日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
15+阅读 · 2019年6月25日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员