Neural architecture search (NAS) aims to automate architecture engineering in neural networks. This often requires a high computational overhead to evaluate a number of candidate networks from the set of all possible networks in the search space during the search. Prediction of the networks' performance can alleviate this high computational overhead by mitigating the need for evaluating every candidate network. Developing such a predictor typically requires a large number of evaluated architectures which may be difficult to obtain. We address this challenge by proposing a novel evolutionary-based NAS strategy, Predictor-assisted E-NAS (PRE-NAS), which can perform well even with an extremely small number of evaluated architectures. PRE-NAS leverages new evolutionary search strategies and integrates high-fidelity weight inheritance over generations. Unlike one-shot strategies, which may suffer from bias in the evaluation due to weight sharing, offspring candidates in PRE-NAS are topologically homogeneous, which circumvents bias and leads to more accurate predictions. Extensive experiments on NAS-Bench-201 and DARTS search spaces show that PRE-NAS can outperform state-of-the-art NAS methods. With only a single GPU searching for 0.6 days, competitive architecture can be found by PRE-NAS which achieves 2.40% and 24% test error rates on CIFAR-10 and ImageNet respectively.


翻译:神经结构搜索(NAS)旨在将神经网络的建筑工程自动化。这往往需要很高的计算间接费用来评估一系列搜索空间中所有可能的网络中的一系列候选网络。预测网络的性能可以通过减轻对每个候选网络的评估需求来减轻这一高计算间接费用。开发这样的预测器通常需要大量可能难以获得的经过评估的建筑。我们通过提出创新的基于进化的NAS战略、预测者协助的E-NAS(PRE-NAS)来应对这一挑战,这种战略即使经过评估的建筑数量极小,也能很好地运行。PRE-NAS利用新的进化搜索战略,并整合了几代人之间的高度忠诚权重继承。与一发战略不同,这种战略可能因权重共享而受到偏差的影响,PRE-NAS的后代候选人在表面上是同质的,从而绕过偏差,导致更准确的预测。关于NAS-Ben-201和DARS搜索空间的大规模实验显示,PRE-NAS可以超越新的进化搜索战略,只有G-PRAS的24天的测试率。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员