Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
翻译:联邦学习(FL)是作为分布式机器学习的一种隐私保护方法提出的。联邦学习结构包括一个中央服务器和一些能够获取私人潜在敏感数据的客户。客户能够将其数据保存在本地机器中,只能与管理协作学习过程的中央服务器分享其当地培训的模式参数。联邦学习(FL)在保健、能源和金融等现实生活中产生了有希望的结果。然而,当参与客户数量大,管理客户的间接费用就会减缓学习速度。因此,采用客户选择作为战略,限制每个过程步骤的沟通方的数目。自早期“{i}随机选择客户以来,文献中就提出了几种客户选择方法。不幸的是,鉴于这是一个新兴领域,客户选择方法缺乏分类,难以比较方法。在本文件中,我们建议对联邦学习协会客户选择进行分类,从而使我们能够了解当前实地的进展,并查明未来在有希望的机器学习领域开展研究的潜在领域。