There is a strong consensus that combining the versatility of machine learning with the assurances given by formal verification is highly desirable. It is much less clear what verified machine learning should mean exactly. We consider this question from the (unexpected?) perspective of computable analysis. This allows us to define the computational tasks underlying verified ML in a model-agnostic way, and show that they are in principle computable.
翻译:一种强烈的共识是,将机器学习的多功能性与正式核查提供的保证结合起来是非常可取的。 更不清楚的是,经过核实的机器学习究竟意味着什么。 我们从可计算分析的(不预期的?? )角度来考虑这一问题。 这使我们能够以模型和不可知的方式界定经核实的 ML 的计算任务,并表明它们原则上是可以计算的。