Whilst debilitating breathing disorders, such as chronic obstructive pulmonary disease (COPD), are rapidly increasing in prevalence, we witness a continued integration of artificial intelligence into healthcare. While this promises improved detection and monitoring of breathing disorders, AI techniques are "data hungry" which highlights the importance of generating physically meaningful surrogate data. Such domain knowledge aware surrogates would enable both an improved understanding of respiratory waveform changes with different breathing disorders and different severities, and enhance the training of machine learning algorithms. To this end, we introduce an apparatus comprising of PVC tubes and 3D printed parts as a simple yet effective method of simulating both obstructive and restrictive respiratory waveforms in healthy subjects. Independent control over both inspiratory and expiratory resistances allows for the simulation of obstructive breathing disorders through the whole spectrum of FEV1/FVC spirometry ratios (used to classify COPD), ranging from healthy values to values seen in severe chronic obstructive pulmonary disease. Moreover, waveform characteristics of breathing disorders, such as a change in inspiratory duty cycle or peak flow are also observed in the waveforms resulting from use of the artificial breathing disorder simulation apparatus. Overall, the proposed apparatus provides us with a simple, effective and physically meaningful way to generate surrogate breathing disorder waveforms, a prerequisite for the use of artificial intelligence in respiratory health.


翻译:尽管慢性阻塞性肺病等衰竭性呼吸障碍正在迅速增加,但我们目睹了人工智能继续被纳入保健工作。尽管这有望改善对呼吸紊乱的检测和监测,但人工智能技术“数据饥饿 ” 凸显了产生具有物理意义的代孕数据的重要性。这类领域知识了解的代孕方法既能使人们更好地了解呼吸波形变化的不同呼吸紊乱和不同差异,又能加强对机器学习算法的培训。为此,我们引入了一种由PVC管和3D印刷部件组成的机器,作为在健康对象中模拟阻塞性和限制性呼吸波形的简单而有效的方法。对呼吸道阻塞和爆炸性抗药的独立控制使得能够在整个FEV1/FVC螺旋比谱中模拟阻塞性呼吸紊乱(用于对COPD进行分类 ), 从健康价值到严重慢性阻塞性肺病的值。此外,我们引入了呼吸系统紊乱的特征,例如呼吸管周期或峰值流动的改变,在健康对象体内的呼吸波状波状波状波状波状波状波状运动也观察到了一种简单的呼吸系统障碍,从呼吸机态的先质结构开始使用。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员