The analysis of cancer omics data is a "classic" problem, however, still remains challenging. Advancing from early studies that are mostly focused on a single type of cancer, some recent studies have analyzed data on multiple "related" cancer types/subtypes, examined their commonality and difference, and led to insightful findings. In this article, we consider the analysis of multiple omics datasets, with each dataset on one type/subtype of "related" cancers. A Community Fusion (CoFu) approach is developed, which conducts marker selection and model building using a novel penalization technique, informatively accommodates the network community structure of omics measurements, and automatically identifies the commonality and difference of cancer omics markers. Simulation demonstrates its superiority over direct competitors. The analysis of TCGA lung cancer and melanoma data leads to interesting findings
翻译:然而,对癌症流行数据的分析仍是一个“古典”问题,仍然具有挑战性。从最初主要侧重于单一类型癌症的研究开始,最近的一些研究分析了多种“相关”癌症类型/子类型/子类型的数据,审查了其共性和差异,并得出了有见地的结论。在本篇文章中,我们考虑了对多种动漫数据集的分析,对一种“相关”癌症类型/子类型进行了每套数据集的分析。我们开发了一种社区融合(CoFu)方法,利用一种新的惩罚技术进行标记选择和模型建设,信息化地适应了对肿瘤测量的网络社区结构,并自动确定了癌症流行标志的共性和差异。模拟表明其优于直接竞争者。对TCGA肺癌和脑瘤数据的分析引出了有趣的发现。