The magnetohydrodynamics (MHD) equations are continuum models used in the study of a wide range of plasma physics systems, including the evolution of complex plasma dynamics in tokamak disruptions. However, efficient numerical solution methods for MHD are extremely challenging due to disparate time and length scales, strong hyperbolic phenomena, and nonlinearity. Therefore the development of scalable, implicit MHD algorithms and high-resolution adaptive mesh refinement strategies is of considerable importance. In this work, we develop a high-order stabilized finite-element algorithm for the reduced visco-resistive MHD equations based on the MFEM finite element library (mfem.org). The scheme is fully implicit, solved with the Jacobian-free Newton-Krylov (JFNK) method with a physics-based preconditioning strategy. Our preconditioning strategy is a generalization of the physics-based preconditioning methods in [Chacon, et al, JCP 2002] to adaptive, stabilized finite elements. Algebraic multigrid methods are used to invert sub-block operators to achieve scalability. A parallel adaptive mesh refinement scheme with dynamic load-balancing is implemented to efficiently resolve the multi-scale spatial features of the system. Our implementation uses the MFEM framework, which provides arbitrary-order polynomials and flexible adaptive conforming and non-conforming meshes capabilities. Results demonstrate the accuracy, efficiency, and scalability of the implicit scheme in the presence of large scale disparity. The potential of the AMR approach is demonstrated on an island coalescence problem in the high Lundquist-number regime ($\ge 10^7$) with the successful resolution of plasmoid instabilities and thin current sheets.


翻译:磁流体动力学(MHD)方程式是研究一系列广泛的等离子物理系统时使用的连续模型,包括托卡马克断裂中复杂的等离子体动态的演进。然而,由于时间和长度尺度不同,超双曲现象和不线性,MHD的高效数字解决方案方法极具挑战性。因此,开发可缩放的、隐含的MHD算法和高分辨率适应性网格改进战略非常重要。在这项工作中,我们根据MFEM固定元素库(mfem.org),为减少的粘反性MHD方程式开发了高度稳定的定值算法。这个方法完全隐含了内含性,与无损牛顿-Krylov(JFNK)法相异,与基于物理的设定战略的假设战略。我们的前提条件是将基于物理的定时法的定律的定点法方法概括化、稳定的定值元素。 变压多格法方法被用于倒向子操作者实现可伸缩性。一个平行的适应性内空流系统,而自动调整的MEMloval-maal-mamamamamamalial 的伸缩系统,其伸缩的伸缩后,其伸缩的伸缩后,其伸缩的伸缩后,其伸缩的伸伸缩式的伸缩后机能性能性系统将显示的伸伸缩式的伸缩式的伸伸缩式的伸伸缩性系统将可伸伸缩性系统能性能性能性平伸伸伸伸伸伸伸伸伸伸伸伸伸伸伸缩性平。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员