We propose a new approach for controlling the characteristics of certain mesh faces during optimization of high-order curved meshes. The practical goals are tangential relaxation along initially aligned curved boundaries and internal surfaces, and mesh fitting to initially non-aligned surfaces. The distinct feature of the method is that it utilizes discrete finite element functions (for example level set functions) to define implicit surfaces, which are used to adapt the positions of certain mesh nodes. The algorithm does not require CAD descriptions or analytic parametrizations, and can be beneficial in computations with dynamically changing geometry, for example shape optimization and moving mesh multimaterial simulations. The main advantage of this approach is that it completely avoids geometric operations (e.g., surface projections), and all calculations can be performed through finite element operations.


翻译:我们提出了在优化高阶弯曲间距时控制某些网状面特征的新方法。 实际目标是在最初对齐的弯曲边界和内部表面上进行相近放松,以及与最初不对齐的表面相匹配。 这种方法的明显特征是,它使用离散的有限元素功能(例如,定级功能)来定义隐含的表面,这些功能用来调整某些网状节点的位置。 算法不需要 CAD 描述或分析的对称,并且可以有利于动态变化几何学的计算,例如形状优化和移动网状多材料模拟。 这种方法的主要优点是,它完全避免了几何操作(例如,地表预测),所有计算都可以通过有限元素操作进行。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月16日
Designing GANs: A Likelihood Ratio Approach
Arxiv
0+阅读 · 2021年7月15日
The Completion of Covariance Kernels
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员