Anomaly detection is a challenging task for machine learning algorithms due to the inherent class imbalance. It is costly and time-demanding to manually analyse the observed data, thus usually only few known anomalies if any are available. Inspired by generative models and the analysis of the hidden activations of neural networks, we introduce a novel unsupervised anomaly detection method called DA3D. Here, we use adversarial autoencoders to generate anomalous counterexamples based on the normal data only. These artificial anomalies used during training allow the detection of real, yet unseen anomalies. With our novel generative approach, we transform the unsupervised task of anomaly detection to a supervised one, which is more tractable by machine learning and especially deep learning methods. DA3D surpasses the performance of state-of-the-art anomaly detection methods in a purely data-driven way, where no domain knowledge is required.
翻译:异常检测是机器学习算法的一项艰巨任务,因为固有的阶级不平衡。人工分析观察到的数据,因此通常只有很少已知的异常现象,因此通常只有很少的已知异常现象(如果有的话)。受基因模型和神经网络隐藏激活分析的启发,我们引入了一种新型的、不受监督的异常现象检测方法DA3D。在这里,我们使用对抗性自动检测器来产生仅以正常数据为基础的异常反抽样。这些在培训期间使用的人工异常使得能够发现真实的、但看不见的异常现象。我们采用新颖的基因化方法,将不受监督的异常检测任务转变为一个受监督的任务,通过机器学习和特别是深层学习方法更能牵动。DA3D超越了纯粹以数据驱动的方式最先进的异常检测方法的性能,而不需要领域知识。