In modern engineering designs, advanced materials (e.g., fiber/particle-reinforced polymers, metallic alloys, laminar composites, etc.) are widely used, where microscale heterogeneities such as grains, inclusions, voids, micro-cracks, and interfaces significantly affect the macroscopic constitutive behaviors. Obviously, an accurate description of the multiscale material behaviors is of great importance to the success of material design and structural analysis. The Representative Volume Element (RVE) analysis method provides a rigorous means to obtain homogenized macroscopic material properties at the upper length scale from the properties of the material constituents and structures at a lower length scale. Recently, we have developed an RVE module (keyword: *RVE_ANALYSIS_FEM) in the multiphysics simulation software LS-DYNA to enable high-fidelity virtual testing of numerically re-constructed material samples at user-specified characteristic length scales. In this article, a brief introduction to this new feature will be given.
翻译:在现代工程设计中,先进材料(例如纤维/粒子加固聚合物、金属合金、薄膜合成物等)被广泛使用,其微尺度差异性,如谷物、包容物、空隙、微裂缝和界面等,对宏观构成行为产生重大影响。显然,对多尺度物质行为的准确描述对于材料设计和结构分析的成功非常重要。代表卷 Element(RVE)分析方法提供了一种严格的手段,从材料成分和结构的特性中获取大尺度的同质化宏观材料特性,其长度较小。最近,我们在多物理模拟软件LS-DYNA中开发了一个RVE单元(关键词:*RVE_NALYSIS_FEM),以便能够在用户指定的特性长度尺度上对数字再造材料样品进行高纤维虚拟测试。在本条中,将对这一新特征进行简短的介绍。