Federated learning (FL) is an emerging machine learning paradigm, in which data owners can collaboratively train a model without sharing their raw data. Two fundamental research problems in FL are the incentive mechanism and privacy protection. The former focuses on how to incentivize data owners to participate in FL. The latter studies how to protect data owners' privacy while maintaining high utility of trained models. However, the incentive mechanism and privacy protection in FL have been studied separately, and no work simultaneously solves both problems. In this work, we address the two problems simultaneously with FL-Market, which incentivizes data owners' participation by providing appropriate payments and privacy protection. FL-Market enables data owners to obtain compensation according to their privacy loss quantified by local differential privacy (LDP). Our insight is that by meeting data owners' personalized privacy preferences and providing appropriate payments, we can (1) incentivize privacy risk-tolerant data owners to set larger privacy parameters (i.e., gradients with less noise) and (2) provide preferred privacy protection for privacy risk-averse data owners. To achieve this, we design a personalized LDP-based FL framework with a deep learning-empowered auction mechanism to incentivize trading private models with less noise and an optimal aggregation mechanism for aggregating local gradients into an accurate global gradient. Our experiments verify the effectiveness of the proposed framework and mechanisms.


翻译:联邦学习(FL)是一个新兴的机器学习模式,数据所有者可以在不分享原始数据的情况下合作培训一个模型。FL的两个根本性研究问题是激励机制和隐私保护。前者侧重于如何激励数据所有者参加FL。后者研究如何保护数据所有者隐私,同时保持训练有素的模型的高度效用。然而,FL的激励机制和隐私保护是分开研究的,没有同时解决这两个问题。在这项工作中,数据所有者可以与FL-市场同时合作,通过提供适当的付款和隐私保护来激励数据所有者参与这两个问题。FL-市场使数据所有者能够根据当地差异隐私权(LDP)量化的隐私损失获得补偿。我们的洞察力是,通过满足数据所有者的个人隐私偏好和适当支付的方式,保护数据所有人保护数据所有人隐私的激励机制和隐私不受风险保护没有同时解决这两个问题。在这项工作中,我们与FLD-Market同时解决了两个问题,通过提供适当的支付和隐私风险保护所有人参与。为了实现这一目标,我们设计了一个以个人化的LDP-DP-FL框架的个人贸易化的准确性升级框架,在深度学习机制下,将一个以最佳的FLIGlistal-listallistal vilal vilusildal vilildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildildil,我们可以设计一个个人交易一个个人交易一个个人交易一个个人交易一个个人交易机制,一个个人交易和深的升级机制,一个个人交易和深的升级框架,一个深的升级机制,我们以一个深级的升级机制,我们将一个深级框架,我们设计框架,我们设计的精确级的升级机制,我们将一个最低级的精确级的精确级的精确级的精确级的升级机制,我们设计的精确级框架,我们设计的精确级的精确级的精确级框架,我们能级的精确级框架,我们设计的

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员