We consider the random number partitioning problem (\texttt{NPP}): given a list $X\sim \mathcal{N}(0,I_n)$ of numbers, find a partition $\sigma\in\{-1,1\}^n$ with a small objective value $H(\sigma)=\frac{1}{\sqrt{n}}\left|\langle \sigma,X\rangle\right|$. The \texttt{NPP} is widely studied in computer science; it is also closely related to the design of randomized controlled trials. In this paper, we propose a planted version of the \texttt{NPP}: fix a $\sigma^*$ and generate $X\sim \mathcal{N}(0,I_n)$ conditional on $H(\sigma^*)\le 3^{-n}$. The \texttt{NPP} and its planted counterpart are statistically distinguishable as the smallest objective value under the former is $\Theta(\sqrt{n}2^{-n})$ w.h.p. Our first focus is on the values of $H(\sigma)$. We show that, perhaps surprisingly, planting does not induce partitions with an objective value substantially smaller than $2^{-n}$: $\min_{\sigma \ne \pm \sigma^*}H(\sigma) = \widetilde{\Theta}(2^{-n})$ w.h.p. Furthermore, we completely characterize the smallest $H(\sigma)$ achieved at any fixed distance from $\sigma^*$. Our second focus is on the algorithmic problem of efficiently finding a partition $\sigma$, not necessarily equal to $\pm\sigma^*$, with a small $H(\sigma)$. We show that planted \texttt{NPP} exhibits an intricate geometrical property known as the multi Overlap Gap Property ($m$-OGP) for values $2^{-\Theta(n)}$. We then leverage the $m$-OGP to show that stable algorithms satisfying a certain anti-concentration property fail to find a $\sigma$ with $H(\sigma)=2^{-\Theta(n)}$. Our results are the first instance of the $m$-OGP being established and leveraged to rule out stable algorithms for a planted model. More importantly, they show that the $m$-OGP framework can also apply to planted models, if the algorithmic goal is to return a solution with a small objective value.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月10日
Arxiv
0+阅读 · 2023年11月10日
Arxiv
0+阅读 · 2023年11月8日
Arxiv
0+阅读 · 2023年11月8日
The Monadic Theory of Toric Words
Arxiv
0+阅读 · 2023年11月8日
Arxiv
0+阅读 · 2023年11月8日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年11月10日
Arxiv
0+阅读 · 2023年11月10日
Arxiv
0+阅读 · 2023年11月8日
Arxiv
0+阅读 · 2023年11月8日
The Monadic Theory of Toric Words
Arxiv
0+阅读 · 2023年11月8日
Arxiv
0+阅读 · 2023年11月8日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员