This paper models residential consumers' energy-consumption behavior by load patterns and distributions and reveals the relationship between consumers' load patterns and socioeconomic features by machine learning. We analyze the real-world smart meter data and extract load patterns using K-Medoids clustering, which is robust to outliers. We develop an analytical framework with feature selection and deep learning models to estimate the relationship between load patterns and socioeconomic features. Specifically, we use an entropy-based feature selection method to identify the critical socioeconomic characteristics that affect load patterns and benefit our method's interpretability. We further develop a customized deep neural network model to characterize the relationship between consumers' load patterns and selected socioeconomic features. Numerical studies validate our proposed framework using Pecan Street smart meter data and survey. We demonstrate that our framework can capture the relationship between load patterns and socioeconomic information and outperform benchmarks such as regression and single DNN models.
翻译:本文用负载模式和分布模式模拟住宅消费者的能源消耗行为,并通过机器学习揭示消费者负载模式与社会经济特征之间的关系。我们用K-Medoids集群分析真实世界的智能计量数据并提取负载模式,K-Medoids集群对外部线十分强大。我们开发了一个具有特征选择和深层次学习模型的分析框架,以估计负载模式与社会经济特征之间的关系。具体地说,我们使用基于酶的特征选择方法来确定影响负载模式并有利于我们方法解释的关键社会经济特征。我们进一步开发了定制的深神经网络模型,以描述消费者负载模式与选定社会经济特征之间的关系。数字研究用Pecan街智能计量数据和调查验证了我们拟议的框架。我们展示了我们的框架可以捕捉载量模式与社会经济信息之间的关系,以及回归和单一DNN模型等不完善的基准。