Vibration patterns yield valuable information about the health state of a running machine, which is commonly exploited in predictive maintenance tasks for large industrial systems. However, the overhead, in terms of size, complexity and power budget, required by classical methods to exploit this information is often prohibitive for smaller-scale applications such as autonomous cars, drones or robotics. Here we propose a neuromorphic approach to perform vibration analysis using spiking neural networks that can be applied to a wide range of scenarios. We present a spike-based end-to-end pipeline able to detect system anomalies from vibration data, using building blocks that are compatible with analog-digital neuromorphic circuits. This pipeline operates in an online unsupervised fashion, and relies on a cochlea model, on feedback adaptation and on a balanced spiking neural network. We show that the proposed method achieves state-of-the-art performance or better against two publicly available data sets. Further, we demonstrate a working proof-of-concept implemented on an asynchronous neuromorphic processor device. This work represents a significant step towards the design and implementation of autonomous low-power edge-computing devices for online vibration monitoring.
翻译:振动模式产生了关于运行机器健康状况的宝贵信息,这种机器通常用于大型工业系统的预测维护任务,然而,传统方法利用这种信息所需的在规模、复杂性和动力预算方面的间接费用,对于汽车、无人驾驶飞机或机器人等小型应用来说,往往无法使用传统方法来利用这种信息。我们在这里提议一种神经形态分析方法,利用可应用于多种情景的刺激神经网络进行振动分析。我们展示了一种基于悬浮的终端到终端管道,能够检测振动数据产生的系统异常,使用与模拟数字神经形态电路相兼容的构件。这一管道以不受监督的在线方式运作,并依赖于科切拉模型、反馈适应和平衡的振动神经网络。我们展示了拟议方法达到最新状态的性能,或者比两种公开提供的数据集更好。此外,我们展示了在不同步神经形态处理器装置上实施的工作验证。这项工作是朝着设计和实施自主的低位静态在线静态设备迈出的重要一步。