This paper is concerned with estimating the column subspace of a low-rank matrix $\boldsymbol{X}^\star \in \mathbb{R}^{n_1\times n_2}$ from contaminated data. How to obtain optimal statistical accuracy while accommodating the widest range of signal-to-noise ratios (SNRs) becomes particularly challenging in the presence of heteroskedastic noise and unbalanced dimensionality (i.e., $n_2\gg n_1$). While the state-of-the-art algorithm $\textsf{HeteroPCA}$ emerges as a powerful solution for solving this problem, it suffers from "the curse of ill-conditioning," namely, its performance degrades as the condition number of $\boldsymbol{X}^\star$ grows. In order to overcome this critical issue without compromising the range of allowable SNRs, we propose a novel algorithm, called $\textsf{Deflated-HeteroPCA}$, that achieves near-optimal and condition-number-free theoretical guarantees in terms of both $\ell_2$ and $\ell_{2,\infty}$ statistical accuracy. The proposed algorithm divides the spectrum of $\boldsymbol{X}^\star$ into well-conditioned and mutually well-separated subblocks, and applies $\textsf{HeteroPCA}$ to conquer each subblock successively. Further, an application of our algorithm and theory to two canonical examples -- the factor model and tensor PCA -- leads to remarkable improvement for each application.


翻译:本文关注从污染数据中估算低位矩阵 $\ boldsymbol{ X<unk> star {x_star\ $ in\ mathbb{R<unk> n__1\timen_2}$ 的列子空间。 如何获得最佳统计准确性, 同时又能容纳最广泛的信号- 噪音比率( SNRs), 而在超位噪音和不平衡的维度( 即, $_ 2\gg n_ 1美元) 的情况下, 尤其具有挑战性。 虽然最先进的算法 $\ textsf{ HeteroPCA} 成为解决这一问题的有力解决方案, 但它却受到“ 错误诅咒” 的困扰。 即, 它的性能会随着 $\ boldsymallsballsbol{X\ star$的增长。 为了克服这个关键问题, 同时又不损害可允许的SNRIS( 范围), 我们提议一种新型算法, 叫做 $\ textf{ defrifleflead- Heter- HeloaroPA} $- host lical_deal_recklex_ral_ral_ rodeal_ dexal_ exal_ exal_ exalalalalal_ exalbalbal_ exalbisal__ $2, $2;</s>

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员