Generalization performance of stochastic optimization stands a central place in learning theory. In this paper, we investigate the excess risk performance and towards improved learning rates for two popular approaches of stochastic optimization: empirical risk minimization (ERM) and stochastic gradient descent (SGD). Although there exists plentiful generalization analysis of ERM and SGD for supervised learning, current theoretical understandings of ERM and SGD either have stronger assumptions in convex learning, e.g., strong convexity, or show slow rates and less studied in nonconvex learning. Motivated by these problems, we aim to provide improved rates under milder assumptions in convex learning and derive faster rates in nonconvex learning. It is notable that our analysis span two popular theoretical viewpoints: \emph{stability} and \emph{uniform convergence}. Specifically, in stability regime, we present high probability learning rates of order $\mathcal{O} (1/n)$ w.r.t. the sample size $n$ for ERM and SGD with milder assumptions in convex learning and similar high probability rates of order $\mathcal{O} (1/n)$ in nonconvex learning, rather than in expectation. Furthermore, this type of learning rate is improved to faster order $\mathcal{O} (1/n^2)$ in uniform convergence regime. To our best knowledge, for ERM and SGD, the learning rates presented in this paper are all state-of-the-art.


翻译:在本文件中,我们调查了超额风险绩效,并改进了两种流行的随机优化方法的学习率:实验风险最小化(ERM)和随机梯度下降(SGD)。尽管对机构风险管理和SGD进行了广泛的一般分析,以监督学习,但目前对机构风险管理和SGD的理论理解在 convex 学习中具有较强的假设,例如,强凝固度,或显示速度缓慢,在非 convex 学习中研究较少。受这些问题的驱动,我们的目标是在比较温和的假设下提供更好的学习率,在非convex 学习中提高速度。值得注意的是,我们对机构风险管理和SGD的理论分析涉及两种受欢迎的理论观点:\emph{sable}和\emph{unform 趋同}。具体地说,在稳定性制度中,我们对顺序的排序为$mathcal{O}(1/n)w.r.t.state 美元和SGD(C)加温度假设在 convex 学习中,这种平均学习率为1x 和类似概率排序。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员