Cartesian differential categories are categories equipped with a differential combinator which axiomatizes the directional derivative. Important models of Cartesian differential categories include classical differential calculus of smooth functions and categorical models of the differential $\lambda$-calculus. However, Cartesian differential categories cannot account for other interesting notions of differentiation of a more discrete nature such as the calculus of finite differences. On the other hand, change action models have been shown to capture these examples as well as more "exotic" examples of differentiation. But change action models are very general and do not share the nice properties of Cartesian differential categories. In this paper, we introduce Cartesian difference categories as a bridge between Cartesian differential categories and change action models. We show that every Cartesian differential category is a Cartesian difference category, and how certain well-behaved change action models are Cartesian difference categories. In particular, Cartesian difference categories model both the differential calculus of smooth functions and the calculus of finite differences. Furthermore, every Cartesian difference category comes equipped with a tangent bundle monad whose Kleisli category is again a Cartesian difference category.


翻译:Cartesian 差分类别是配有不同组合的类别, 使方向衍生物具有分解性。 重要的Cartesian 差分类别模式包括光滑功能的经典差异计算法和差价 $\lambda$- calculus 的绝对模型。 但是, Cartesian 差分类别无法解释其他更离散性质差异的有趣概念, 如有限差异的微分。 另一方面, 已经展示了变化行动模式, 以捕捉这些例子以及更多的“ examinal” 差异示例。 但变化行动模式非常笼统, 不分享Cartesian 差分类别的良好特性。 在本文件中, 我们引入Cartesian 差分类别作为Cartesian 差分类别和差价行动模型之间的桥梁。 我们显示, 每个Cartesian 差分类别都属于Cartesian 差分类别, 以及某些稳妥的改变行动模式是Cartesian 差类别。 特别是, 差分分分分函数和差分差分差分差分的分类和差分差分。 此外, 每个Cartesian 差类别都配有卡列有卡列。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
39+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月24日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
39+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员