Scientific knowledge and advances are a cornerstone of modern society. They improve our understanding of the world we live in and help us navigate global challenges including emerging infectious diseases, climate change and the biodiversity crisis. For any scientist, whether they work primarily in fundamental knowledge generation or in the applied sciences, it is important to understand how science fits into a decision-making framework. Decision science is a field that aims to pinpoint evidence-based management strategies. It provides a framework for scientists to directly impact decisions or to understand how their work will fit into a decision process. Decision science is more than undertaking targeted and relevant scientific research or providing tools to assist policy makers; it is an approach to problem formulation, bringing together mathematical modelling, stakeholder values and logistical constraints to support decision making. In this paper we describe decision science, its use in different contexts, and highlight current gaps in methodology and application. The COVID-19 pandemic has thrust mathematical models into the public spotlight, but it is one of innumerable examples in which modelling informs decision making. Other examples include models of storm systems (eg. cyclones, hurricanes) and climate change. Although the decision timescale in these examples differs enormously (from hours to decades), the underlying decision science approach is common across all problems. Bridging communication gaps between different groups is one of the greatest challenges for scientists. However, by better understanding and engaging with the decision-making processes, scientists will have greater impact and make stronger contributions to important societal problems.


翻译:科学知识和进步是现代社会的基石,它们增进了我们对世界的认识,有助于我们应对包括新出现的传染病、气候变化和生物多样性危机在内的全球挑战。对于科学家来说,无论是他们主要从事基本知识的产生,还是应用科学,重要的是要了解科学如何适合决策框架。决策科学是一个旨在确定循证管理战略的领域。它为科学家提供了一个框架,以直接影响决策或了解他们的工作将如何纳入决策过程提供了框架。决策科学不仅仅是进行有针对性的相关科学研究或提供工具来帮助决策者;它是一种解决问题的方法,将数学建模、利益攸关方价值观和后勤方面的制约因素汇集在一起,以支持决策。在本文中,我们描述了决策科学、其在不同背景下的使用情况,并强调了当前在方法和应用方面的差距。COVID-19大流行病将数学模型推向公众的焦点,但这是为决策提供建模的无数例子之一。其他例子包括风暴系统(如气旋、飓风)和气候变化模型。尽管这些例子中的决策时间范围差异巨大(从数小时到数十年),但决定科学方面的潜在差距是所有共同问题。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
110+阅读 · 2020年2月5日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员