The dichromatic number $\vec\chi(D)$ of a digraph $D$ is the minimum size of a partition of its vertices into acyclic induced subgraphs. We denote by $\lambda(D)$ the maximum local edge connectivity of a digraph $D$. Neumann-Lara proved that for every digraph $D$, $\vec\chi(D) \leq \lambda(D) + 1$. In this paper, we characterize the digraphs $D$ for which $\vec\chi(D) = \lambda(D) + 1$. This generalizes an analogue result for undirected graph proved by Stiebitz and Toft as well as the directed version of Brooks' Theorem proved by Mohar. Along the way, we introduce a generalization of Haj\'os join that gives a new way to construct families of dicritical digraphs that is of independent interest.
翻译:摘要:有向图 $D$ 的二色数 $\vec\chi(D)$ 是其顶点划分成无环诱导子图的最小数目。我们用 $\lambda(D)$ 表示有向图 $D$ 的最大局部边连通性。Neumann-Lara 证明对于任何有向图 $D$ 都有 $\vec\chi(D) \leq \lambda(D) + 1$。本文中,我们表征满足 $\vec\chi(D) = \lambda(D) + 1$ 的有向图 $D$,推广了 Stiebitz 和 Toft 对于无向图的类似结果以及 Mohar 对于 Brooks 定理的有向版本。在此过程中,我们引入了一个 Hajós 连接的推广,提供了一种构造 dicritical 有向图家族的新方法,这是一个独立的研究方向。